Coherent sheaves, superconnection Riemann-Roch-Grothendieck

joint work J.-M. Bismut \& Z. Wei, arXiv:2102.08129, to appear in Progress in Mathematics 347

Shu Shen
IMJ-PRG, Sorbonne Université, Paris

Paris, Sep 6, 2023

Main results

Main results

- X : closed complex manifold.

Main results

- X : closed complex manifold.
- $K(X): K$-group of coherent sheaves.

Main results

- X : closed complex manifold.
- $K(X): K$-group of coherent sheaves.
- holomorphic analogue of the topological K-theory.

Main results

- X : closed complex manifold.
- $K(X): K$-group of coherent sheaves.
- holomorphic analogue of the topological K-theory.
- $H_{\mathrm{BC}}(X, \mathbf{R})$: Bott-Chern cohomology.

Main results

- X : closed complex manifold.
- $K(X): K$-group of coherent sheaves.
- holomorphic analogue of the topological K-theory.
- $H_{\mathrm{BC}}(X, \mathbf{R})$: Bott-Chern cohomology.
- holomorphic analogue of the de Rham cohomology.

Main results

- X : closed complex manifold.
- $K(X): K$-group of coherent sheaves.
- holomorphic analogue of the topological K-theory.
- $H_{\mathrm{BC}}(X, \mathbf{R})$: Bott-Chern cohomology.
- holomorphic analogue of the de Rham cohomology.

Theorem (Bismut-S.-Wei, 2021)

(1) There is a Chern character $\mathrm{ch}_{\mathrm{BC}}: K(X) \rightarrow H_{\mathrm{BC}}(X, \mathbf{R})$.

Main results

- X : closed complex manifold.
- $K(X): K$-group of coherent sheaves.
- holomorphic analogue of the topological K-theory.
- $H_{\mathrm{BC}}(X, \mathbf{R})$: Bott-Chern cohomology.
- holomorphic analogue of the de Rham cohomology.

Theorem (Bismut-S.-Wei, 2021)

(1) There is a Chern character $\mathrm{ch}_{\mathrm{BC}}: K(X) \rightarrow H_{\mathrm{BC}}(X, \mathbf{R})$.
(2) $\mathrm{ch}_{\mathrm{BC}}$ satisfies RRG formula for arbitrary holomorphic map $f: X \rightarrow Y$,

Main results

- X : closed complex manifold.
- $K(X): K$-group of coherent sheaves.
- holomorphic analogue of the topological K-theory.
- $H_{\mathrm{BC}}(X, \mathbf{R})$: Bott-Chern cohomology.
- holomorphic analogue of the de Rham cohomology.

Theorem (Bismut-S.-Wei, 2021)

(1) There is a Chern character ch $\mathrm{BC}_{\mathrm{BC}}: K(X) \rightarrow H_{\mathrm{BC}}(X, \mathbf{R})$.
(2) $\mathrm{ch}_{\mathrm{BC}}$ satisfies RRG formula for arbitrary holomorphic map $f: X \rightarrow Y$, i.e., the diagram commutes

Main results

- X : closed complex manifold.
- $K(X): K$-group of coherent sheaves.
- holomorphic analogue of the topological K-theory.
- $H_{\mathrm{BC}}(X, \mathbf{R})$: Bott-Chern cohomology.
- holomorphic analogue of the de Rham cohomology.

Theorem (Bismut-S.-Wei, 2021)

(1) There is a Chern character $\mathrm{ch}_{\mathrm{BC}}: K(X) \rightarrow H_{\mathrm{BC}}(X, \mathbf{R})$.
(2) $\mathrm{ch}_{\mathrm{BC}}$ satisfies RRG formula for arbitrary holomorphic map $f: X \rightarrow Y$, i.e., the diagram commutes

equivalently $\operatorname{Td}_{\mathrm{BC}}(T Y) \mathrm{ch}_{\mathrm{BC}}\left(f_{!} \mathcal{F}\right)=f_{*}\left(\operatorname{Td}_{\mathrm{BC}}(T X) \mathrm{ch}_{\mathrm{BC}}(\mathcal{F})\right)$.

Chern-Weil theory
Chern character and coherent sheaves Riemann-Roch-Grothendieck

Bott-Chern cohomology

Holomorphic vector bundles
Complex of holomorphic vector bundles

de Rham cohomology

- $\Omega^{k}(X, \mathbf{R})$: smooth k-forms.

- $d \cdot \Omega \bullet(\mathbf{Y} \mathbf{P}), \Omega^{\bullet}+1(\mathbf{Y} \mathbf{P})$. de Rham operator.

Chern-Weil theory
Chern character and coherent sheaves Riemann-Roch-Grothendieck

de Rham cohomology

- $\Omega^{k}(X, \mathbf{R})$: smooth k-forms.
- $d: \Omega^{\bullet}(X, \mathbf{R}) \rightarrow \Omega^{\bullet+1}(X, \mathbf{R})$: de Rham operator

de Rham cohomology

- $\Omega^{k}(X, \mathbf{R})$: smooth k-forms.
- $d: \Omega^{\bullet}(X, \mathbf{R}) \rightarrow \Omega^{\bullet+1}(X, \mathbf{R}):$ de Rham operator.

de Rham cohomology

- $\Omega^{k}(X, \mathbf{R})$: smooth k-forms.
- $d: \Omega^{\bullet}(X, \mathbf{R}) \rightarrow \Omega^{\bullet+1}(X, \mathbf{R})$: de Rham operator.
- $d^{2}=0$.

de Rham cohomology

- $\Omega^{k}(X, \mathbf{R})$: smooth k-forms.
- $d: \Omega^{\bullet}(X, \mathbf{R}) \rightarrow \Omega^{\bullet+1}(X, \mathbf{R})$: de Rham operator.
- $d^{2}=0$.

Definition (de Rham)

$H_{\mathrm{dR}}^{p}(X, \mathbf{R})=\operatorname{ker} d \cap \Omega^{p}(X, \mathbf{R}) / d \Omega^{p-1}(X, \mathbf{R})$.

Chern-Weil theory
Chern character and coherent sheaves Riemann-Roch-Grothendieck

Bott-Chern cohomology

Holomorphic vector bundles
Complex of holomorphic vector bundles

Bott-Chern cohomology

Chern-Weil theory
Chern character and coherent sheaves Riemann-Roch-Grothendieck

Bott-Chern cohomology

- $\Omega^{p, q}(X, \mathbf{C})$: smooth (p, q)-forms.

Bott-Chern cohomology

- $\Omega^{p, q}(X, \mathbf{C})$: smooth (p, q)-forms.
- $d=\partial+\bar{\partial}$.

Bott-Chern cohomology

- $\Omega^{p, q}(X, \mathbf{C})$: smooth (p, q)-forms.
- $d=\partial+\bar{\partial}$.
- Classical relation $\partial^{2}=0, \bar{\partial}^{2}=0,[\partial, \bar{\partial}]=0$.

Bott-Chern cohomology

- $\Omega^{p, q}(X, \mathbf{C})$: smooth (p, q)-forms.
- $d=\partial+\bar{\partial}$.
- Classical relation $\partial^{2}=0, \bar{\partial}^{2}=0,[\partial, \bar{\partial}]=0$.

Definition (Bott-Chern)

$$
H_{\mathrm{BC}}^{p, q}(X, \mathbf{C})=\operatorname{ker} d \cap \Omega^{p, q}(X, \mathbf{C}) / \bar{\partial} \partial \Omega^{p-1, q-1}(X, \mathbf{C}) .
$$

Chern-Weil theory
Chern character and coherent sheaves Riemann-Roch-Grothendieck

Bott-Chern cohomology

Holomorphic vector bundles
Complex of holomorphic vector bundles

Bott-Chern vs de Rham

Bott-Chern vs de Rham

- Canonical morphism : $H_{\mathrm{BC}}^{p, q}(X, \mathbf{C}) \rightarrow H_{\mathrm{dR}}^{p+q}(X, \mathbf{C})$.

Bott-Chern vs de Rham

- Canonical morphism : $H_{\mathrm{BC}}^{p, q}(X, \mathbf{C}) \rightarrow H_{\mathrm{dR}}^{p+q}(X, \mathbf{C})$.
- If X is Kähler, $\oplus_{p+q=k} H_{\mathrm{BC}}^{p, q}(X, \mathbf{C}) \simeq H_{\mathrm{dR}}^{k}(X, \mathbf{C})$.

Bott-Chern vs de Rham

- Canonical morphism : $H_{\mathrm{BC}}^{p, q}(X, \mathbf{C}) \rightarrow H_{\mathrm{dR}}^{p+q}(X, \mathbf{C})$.
- If X is Kähler, $\oplus_{p+q=k} H_{\mathrm{BC}}^{p, q}(X, \mathbf{C}) \simeq H_{\mathrm{dR}}^{k}(X, \mathbf{C})$.
- In general, $H_{\mathrm{BC}}(X, \mathbf{C}) \not \not 千 H_{\mathrm{dR}}(X, \mathbf{C})$ (e.g. Iwasawa manifold, Hopf manifold).

Holomorphic vector bundles

- D : holomorphic vector bundle.

Holomorphic vector bundles

- D : holomorphic vector bundle.
- $\nabla^{D^{\prime \prime}}: \Omega^{0, \bullet}(X, D) \rightarrow \Omega^{0, \bullet+1}(X, D)$ holomorphic structure.

Holomorphic vector bundles

- D : holomorphic vector bundle.
- $\nabla^{D \prime \prime}: \Omega^{0, \bullet}(X, D) \rightarrow \Omega^{0, \bullet+1}(X, D)$ holomorphic structure.
(1) Leibniz rule: $\nabla^{D \prime \prime}(\alpha s)=\bar{\partial} \alpha \cdot s+(-1)^{\operatorname{deg} \alpha} \alpha \wedge \nabla^{D \prime \prime} s$

Holomorphic vector bundles

- D : holomorphic vector bundle.
- $\nabla^{D \prime \prime}: \Omega^{0, \bullet}(X, D) \rightarrow \Omega^{0, \bullet+1}(X, D)$ holomorphic structure.
(1) Leibniz rule: $\nabla^{D \prime \prime}(\alpha s)=\bar{\partial} \alpha \cdot s+(-1)^{\operatorname{deg} \alpha} \alpha \wedge \nabla^{D \prime \prime} s$
(2) $\left(\nabla^{D \prime \prime}\right)^{2}=0$.

Holomorphic vector bundles

- D : holomorphic vector bundle.
- $\nabla^{D \prime \prime}: \Omega^{0, \bullet}(X, D) \rightarrow \Omega^{0, \bullet+1}(X, D)$ holomorphic structure.
(1) Leibniz rule: $\nabla^{D \prime \prime}(\alpha s)=\bar{\partial} \alpha \cdot s+(-1)^{\operatorname{deg} \alpha} \alpha \wedge \nabla^{D \prime \prime} s$
(2) $\left(\nabla^{D \prime \prime}\right)^{2}=0$.

Theorem (Koszul-Malgrange, Newlander-Nirenberg)

A smooth vector bundle D is holomorphic iff there is $\nabla^{D \prime \prime}: \Omega^{0, \bullet}(X, D) \rightarrow \Omega^{0, \bullet+1}(X, D)$ with Leibniz rule and $\left(\nabla^{D \prime \prime}\right)^{2}=0$.

Chern-Weil theory
Chern character and coherent sheaves Riemann-Roch-Grothendieck

Chern connection

Chern connection

- $\left(D, \nabla^{D \prime \prime}\right)$: holomorphic vector bundle.

Chern connection

- $\left(D, \nabla^{D \prime \prime}\right)$: holomorphic vector bundle.
- h^{D} : Hermitian metric on D.

Chern connection

- $\left(D, \nabla^{D \prime \prime}\right)$: holomorphic vector bundle.
- h^{D} : Hermitian metric on D.
- $\nabla^{D}=\nabla^{D^{\prime \prime}}+\nabla^{D^{\prime}}$: Chern connection.

Chern connection

- $\left(D, \nabla^{D \prime \prime}\right)$: holomorphic vector bundle.
- h^{D} : Hermitian metric on D.
- $\nabla^{D}=\nabla^{D \prime \prime}+\nabla^{D \prime}$: Chern connection. (Unique unitary connection whose antiholomorphic part is given by the holomorphic structure.)

Chern connection

- $\left(D, \nabla^{D \prime \prime}\right)$: holomorphic vector bundle.
- h^{D} : Hermitian metric on D.
- $\nabla^{D}=\nabla^{D^{\prime \prime}}+\nabla^{D^{\prime}}$: Chern connection. (Unique unitary connection whose antiholomorphic part is given by the holomorphic structure.)
- We have

$$
\left(\nabla^{D \prime \prime}\right)^{2}=0, \quad\left(\nabla^{D^{\prime}}\right)^{2}=0, \quad\left(\nabla^{D}\right)^{2}=\left[\nabla^{D^{\prime \prime}}, \nabla^{D^{\prime}}\right]
$$

Chern connection

- $\left(D, \nabla^{D \prime \prime}\right)$: holomorphic vector bundle.
- h^{D} : Hermitian metric on D.
- $\nabla^{D}=\nabla^{D \prime \prime}+\nabla^{D \prime}$: Chern connection. (Unique unitary connection whose antiholomorphic part is given by the holomorphic structure.)
- We have

$$
\left(\nabla^{D \prime \prime}\right)^{2}=0, \quad\left(\nabla^{D^{\prime}}\right)^{2}=0, \quad\left(\nabla^{D}\right)^{2}=\left[\nabla^{D \prime \prime}, \nabla^{D \prime}\right] .
$$

- $R^{D}=\left(\nabla^{D}\right)^{2} \in \Omega^{1,1}(X, \operatorname{End}(D))$.

Chern-Weil theory
Chern character and coherent sheaves Riemann-Roch-Grothendieck

Bott-Chern cohomology
Holomorphic vector bundles
Complex of holomorphic vector bundles

Chern-Weil \& Bott-Chern theory

Chern-Weil \& Bott-Chern theory

Definition

$\operatorname{ch}\left(D, \nabla^{D \prime \prime}, h^{D}\right)=\operatorname{Tr}\left[\exp \left(-R^{D} / 2 i \pi\right)\right] \in \Omega(X, \mathbf{C})$.

Chern-Weil \& Bott-Chern theory

Definition

$\operatorname{ch}\left(D, \nabla^{D \prime \prime}, h^{D}\right)=\operatorname{Tr}\left[\exp \left(-R^{D} / 2 i \pi\right)\right] \in \Omega(X, \mathbf{C})$.

Theorem (Chern-Weil, Bott-Chern)

(1) $\operatorname{ch}\left(D, \nabla^{D \prime \prime}, h^{D}\right) \in \oplus_{p} \Omega^{p, p}(X, \mathbf{R})$ and d-closed.

Chern-Weil \& Bott-Chern theory

Definition

$\operatorname{ch}\left(D, \nabla^{D \prime \prime}, h^{D}\right)=\operatorname{Tr}\left[\exp \left(-R^{D} / 2 i \pi\right)\right] \in \Omega(X, \mathbf{C})$.

Theorem (Chern-Weil, Bott-Chern)

(1) $\operatorname{ch}\left(D, \nabla^{D \prime \prime}, h^{D}\right) \in \oplus_{p} \Omega^{p, p}(X, \mathbf{R})$ and d-closed.
(2) $\operatorname{ch}_{\mathrm{BC}}\left(D, \nabla^{D \prime \prime}\right)=\left[\operatorname{ch}\left(D, \nabla^{D \prime \prime}, h^{D}\right)\right] \in \underbrace{\oplus_{p} H_{\mathrm{BC}}^{p, p}(X, \mathbf{R})}_{H_{\mathrm{BC}}(X, \mathbf{R})}$ is
independent of h^{D}.

Chern-Weil \& Bott-Chern theory

Definition

$\operatorname{ch}\left(D, \nabla^{D \prime \prime}, h^{D}\right)=\operatorname{Tr}\left[\exp \left(-R^{D} / 2 i \pi\right)\right] \in \Omega(X, \mathbf{C})$.

Theorem (Chern-Weil, Bott-Chern)

(1) $\operatorname{ch}\left(D, \nabla^{D \prime \prime}, h^{D}\right) \in \oplus_{p} \Omega^{p, p}(X, \mathbf{R})$ and d-closed.
(2) $\operatorname{ch}_{\mathrm{BC}}\left(D, \nabla^{D \prime \prime}\right)=\left[\operatorname{ch}\left(D, \nabla^{D \prime \prime}, h^{D}\right)\right] \in \underbrace{\oplus_{p} H_{\mathrm{BC}}^{p, p}(X, \mathbf{R})}_{H_{\mathrm{BC}}(X, \mathbf{R})}$ is
independent of h^{D}. (holomorphic invariant!)

Chern-Weil \& Bott-Chern theory

Definition

$\operatorname{ch}\left(D, \nabla^{D \prime \prime}, h^{D}\right)=\operatorname{Tr}\left[\exp \left(-R^{D} / 2 i \pi\right)\right] \in \Omega(X, \mathbf{C})$.

Theorem (Chern-Weil, Bott-Chern)

(1) $\operatorname{ch}\left(D, \nabla^{D \prime \prime}, h^{D}\right) \in \oplus_{p} \Omega^{p, p}(X, \mathbf{R})$ and d-closed.
(2) $\operatorname{ch}_{\mathrm{BC}}\left(D, \nabla^{D \prime \prime}\right)=\left[\operatorname{ch}\left(D, \nabla^{D \prime \prime}, h^{D}\right)\right] \in \underbrace{\oplus_{p} H_{\mathrm{BC}}^{p, p}(X, \mathbf{R})}_{H_{\mathrm{BC}}(X, \mathbf{R})}$ is
independent of h^{D}. (holomorphic invariant!)

Remark

$\operatorname{ch}_{\mathrm{dR}}(D)=\left[\operatorname{ch}\left(D, \nabla^{D \prime \prime}, h^{D}\right)\right]_{\mathrm{dR}} \in H_{\mathrm{dR}}^{\text {even }}(X, \mathbf{R})$ is a topological invariant.

$c_{1, \mathrm{BC}} \mathrm{VS} c_{1, \mathrm{dR}}$

Example

(1) Hopf surface: $X=\mathbf{C}^{2} \backslash\{0\} / \mathbf{Z}$ where $n \cdot\left(z_{1}, z_{2}\right)=2^{n}\left(z_{1}, z_{2}\right)$.
(2) $X \simeq_{\text {diffeo }} S^{3} \times S^{1}, H_{\mathrm{dR}}^{2}(X, \mathbf{R})=0$ and $c_{1, \mathrm{dR}}(T X)=0$.
(3) $\operatorname{dim} H_{\mathrm{BC}}^{1,1}(X, \mathbf{R})=1$ and $c_{1, \mathrm{BC}}(T X) \neq 0$.

Complex of holomorphic vector bundles

- Complex of holomorphic vector bundles

$$
0 \longrightarrow D^{r} \xrightarrow{v} D^{r+1} \xrightarrow{v} \ldots \xrightarrow{v} D^{r^{\prime}} \longrightarrow 0 \text {. }
$$

Complex of holomorphic vector bundles

- Complex of holomorphic vector bundles

$$
0 \longrightarrow D^{r} \xrightarrow{v} D^{r+1} \xrightarrow{v} \ldots \xrightarrow{v} D^{r^{\prime}} \longrightarrow 0 \text {. }
$$

- D^{i} has a holomorphic structure $\nabla^{D^{i}}$.

Complex of holomorphic vector bundles

- Complex of holomorphic vector bundles

$$
0 \longrightarrow D^{r} \xrightarrow{v} D^{r+1} \xrightarrow{v} \ldots \xrightarrow{v} D^{r^{\prime}} \longrightarrow 0 \text {. }
$$

- D^{i} has a holomorphic structure $\nabla^{D^{i}}$.
- v is holomorphic, i.e., $\left[v, \nabla^{D^{\prime \prime}}\right]=0$.

Complex of holomorphic vector bundles

- Complex of holomorphic vector bundles

$$
0 \longrightarrow D^{r} \xrightarrow{v} D^{r+1} \xrightarrow{v} \ldots \xrightarrow{v} D^{r^{\prime}} \longrightarrow 0 \text {. }
$$

- D^{i} has a holomorphic structure $\nabla^{D^{i}}$.
- v is holomorphic, i.e., $\left[v, \nabla^{D^{\prime \prime}}\right]=0$.
- $\Omega^{0, p}\left(X, D^{q}\right)$ has total degree $p+q$.
- $A^{\prime \prime}$ is an example of antiholomorphic superconnection.

Complex of holomorphic vector bundles

- Complex of holomorphic vector bundles

$$
0 \longrightarrow D^{r} \xrightarrow{v} D^{r+1} \xrightarrow{v} \ldots \xrightarrow{v} D^{r^{\prime}} \longrightarrow 0 .
$$

- D^{i} has a holomorphic structure $\nabla^{D^{i}}$.
- v is holomorphic, i.e., $\left[v, \nabla^{D^{\prime \prime}}\right]=0$.
- $\Omega^{0, p}\left(X, D^{q}\right)$ has total degree $p+q$.
- $A^{\prime \prime}=v+\nabla^{D \prime \prime}: \Omega^{0, \bullet}\left(X, D^{\bullet}\right) \rightarrow\left[\Omega^{0 \bullet}\left(X, D^{\bullet}\right)\right]^{+1}$ has total degree 1 and $\left(A^{\prime \prime}\right)^{2}=0$.

Complex of holomorphic vector bundles

- Complex of holomorphic vector bundles

$$
0 \longrightarrow D^{r} \xrightarrow{v} D^{r+1} \xrightarrow{v} \ldots \xrightarrow{v} D^{r^{\prime}} \longrightarrow 0 .
$$

- D^{i} has a holomorphic structure $\nabla^{D^{i}}$.
- v is holomorphic, i.e., $\left[v, \nabla^{D^{\prime \prime}}\right]=0$.
- $\Omega^{0, p}\left(X, D^{q}\right)$ has total degree $p+q$.
- $A^{\prime \prime}=v+\nabla^{D^{\prime \prime}}: \Omega^{0, \bullet}\left(X, D^{\bullet}\right) \rightarrow\left[\Omega^{0, \bullet}\left(X, D^{\bullet}\right)\right]^{+1}$ has total degree 1 and $\left(A^{\prime \prime}\right)^{2}=0$.
- $A^{\prime \prime}$ is an example of antiholomorphic superconnection.

Chern-Weil theory
Chern character and coherent sheaves Riemann-Roch-Grothendieck

Bott-Chern cohomology
Holomorphic vector bundles
Complex of holomorphic vector bundles

$\operatorname{ch}_{\mathrm{BC}}$ for $A^{\prime \prime}$

$\mathrm{ch}_{\mathrm{BC}}$ for $A^{\prime \prime}$

- $h^{D}: \mathbf{Z}$-graded Hermitian metric on D^{\bullet}.

$\mathrm{ch}_{\mathrm{BC}}$ for $A^{\prime \prime}$

- $h^{D}: \mathbf{Z}$-graded Hermitian metric on D^{\bullet}.
- $A^{\prime}=v^{*}+\nabla^{D^{\prime}}$ ("adjoint" of $A^{\prime \prime}$ w.r.t. h^{D}).

$\mathrm{ch}_{\mathrm{BC}}$ for $A^{\prime \prime}$

- $h^{D}: \mathbf{Z}$-graded Hermitian metric on D^{\bullet}.
- $A^{\prime}=v^{*}+\nabla^{D \prime}$ ("adjoint" of $A^{\prime \prime}$ w.r.t. h^{D}).
- $A=A^{\prime \prime}+A^{\prime}$ (example of superconnection).

$\mathrm{ch}_{\mathrm{BC}}$ for $A^{\prime \prime}$

- $h^{D}: \mathbf{Z}$-graded Hermitian metric on D^{\bullet}.
- $A^{\prime}=v^{*}+\nabla^{D \prime}$ ("adjoint" of $A^{\prime \prime}$ w.r.t. h^{D}).
- $A=A^{\prime \prime}+A^{\prime}$ (example of superconnection).
- $\left(A^{\prime \prime}\right)^{2}=0,\left(A^{\prime}\right)^{2}=0, A^{2}=\left[A^{\prime \prime}, A^{\prime}\right]$.

$\mathrm{ch}_{\mathrm{BC}}$ for $A^{\prime \prime}$

- $h^{D}: \mathbf{Z}$-graded Hermitian metric on D^{\bullet}.
- $A^{\prime}=v^{*}+\nabla^{D \prime}$ ("adjoint" of $A^{\prime \prime}$ w.r.t. h^{D}).
- $A=A^{\prime \prime}+A^{\prime}$ (example of superconnection).
- $\left(A^{\prime \prime}\right)^{2}=0,\left(A^{\prime}\right)^{2}=0, A^{2}=\left[A^{\prime \prime}, A^{\prime}\right]$.
- $\operatorname{ch}\left(D, A^{\prime \prime}, h^{D}\right)=\frac{1}{(2 i \pi)^{N / 2}} \operatorname{Tr}_{\mathrm{s}}\left[\exp \left(-A^{2}\right)\right]$.

$\mathrm{ch}_{\mathrm{BC}}$ for $A^{\prime \prime}$

- $h^{D}: \mathbf{Z}$-graded Hermitian metric on D^{\bullet}.
- $A^{\prime}=v^{*}+\nabla^{D \prime}$ ("adjoint" of $A^{\prime \prime}$ w.r.t. h^{D}).
- $A=A^{\prime \prime}+A^{\prime}$ (example of superconnection).
- $\left(A^{\prime \prime}\right)^{2}=0,\left(A^{\prime}\right)^{2}=0, A^{2}=\left[A^{\prime \prime}, A^{\prime}\right]$.
- $\operatorname{ch}\left(D, A^{\prime \prime}, h^{D}\right)=\frac{1}{(2 i \pi)^{N / 2}} \operatorname{Tr}_{\mathrm{s}}\left[\exp \left(-A^{2}\right)\right]$.

Theorem (Bismut-Gillet-Soulé)

(1) $\operatorname{ch}\left(D, A^{\prime \prime}, h^{D}\right) \in \oplus_{p} \Omega^{p, p}(X, \mathbf{R})$ is d-closed.

$\mathrm{ch}_{\mathrm{BC}}$ for $A^{\prime \prime}$

- $h^{D}: \mathbf{Z}$-graded Hermitian metric on D^{\bullet}.
- $A^{\prime}=v^{*}+\nabla^{D \prime}$ ("adjoint" of $A^{\prime \prime}$ w.r.t. $\left.h^{D}\right)$.
- $A=A^{\prime \prime}+A^{\prime}$ (example of superconnection).
- $\left(A^{\prime \prime}\right)^{2}=0,\left(A^{\prime}\right)^{2}=0, A^{2}=\left[A^{\prime \prime}, A^{\prime}\right]$.
- $\operatorname{ch}\left(D, A^{\prime \prime}, h^{D}\right)=\frac{1}{(2 i \pi)^{N / 2}} \operatorname{Tr}_{\mathrm{s}}\left[\exp \left(-A^{2}\right)\right]$.

Theorem (Bismut-Gillet-Soulé)

(1) $\operatorname{ch}\left(D, A^{\prime \prime}, h^{D}\right) \in \oplus_{p} \Omega^{p, p}(X, \mathbf{R})$ is d-closed.
(2) $\operatorname{ch}_{\mathrm{BC}}\left(D, A^{\prime \prime}\right)=\left[\operatorname{ch}\left(D, A^{\prime \prime}, h^{D}\right)\right] \in \oplus_{p} H_{\mathrm{BC}}^{p, p}(X, \mathbf{R})$ is independent of h^{D}.

$\mathrm{ch}_{\mathrm{BC}}$ for $A^{\prime \prime}$

- $h^{D}: \mathbf{Z}$-graded Hermitian metric on D^{\bullet}.
- $A^{\prime}=v^{*}+\nabla^{D \prime}$ ("adjoint" of $A^{\prime \prime}$ w.r.t. $\left.h^{D}\right)$.
- $A=A^{\prime \prime}+A^{\prime}$ (example of superconnection).
- $\left(A^{\prime \prime}\right)^{2}=0,\left(A^{\prime}\right)^{2}=0, A^{2}=\left[A^{\prime \prime}, A^{\prime}\right]$.
- $\operatorname{ch}\left(D, A^{\prime \prime}, h^{D}\right)=\frac{1}{(2 i \pi)^{N / 2}} \operatorname{Tr}_{\mathrm{s}}\left[\exp \left(-A^{2}\right)\right]$.

Theorem (Bismut-Gillet-Soulé)

(1) $\operatorname{ch}\left(D, A^{\prime \prime}, h^{D}\right) \in \oplus_{p} \Omega^{p, p}(X, \mathbf{R})$ is d-closed.
(2) $\operatorname{ch}_{\mathrm{BC}}\left(D, A^{\prime \prime}\right)=\left[\operatorname{ch}\left(D, A^{\prime \prime}, h^{D}\right)\right] \in \oplus_{p} H_{\mathrm{BC}}^{p, p}(X, \mathbf{R})$ is independent of h^{D}.
(3) $\operatorname{ch}_{\mathrm{BC}}\left(D, A^{\prime \prime}\right)=\sum_{i}(-1)^{i} \operatorname{ch}_{\mathrm{BC}}\left(D^{i}, \nabla^{D^{i} \prime \prime}\right)$.

Chern-Weil theory
Chern character and coherent sheaves Riemann-Roch-Grothendieck

Bott-Chern cohomology
Holomorphic vector bundles
Complex of holomorphic vector bundles

K-theory of holomorphic vector bundles

Chern-Weil theory
Chern character and coherent sheaves Riemann-Roch-Grothendieck

K-theory of holomorphic vector bundles

Definition

$K^{\bullet}(X)$: Abelian group

- Generators : holomorphic vector bundles.
- Relations: if we have a short exact sequence,

K-theory of holomorphic vector bundles

Definition

$K^{\bullet}(X)$: Abelian group

- Generators : holomorphic vector bundles.

K-theory of holomorphic vector bundles

Definition

$K^{\bullet}(X)$: Abelian group

- Generators : holomorphic vector bundles.
- Relations: if we have a short exact sequence,

$$
0 \rightarrow E \rightarrow E^{\prime} \rightarrow E^{\prime \prime} \rightarrow 0
$$

then $E^{\prime}=E+E^{\prime \prime}$.

K-theory of holomorphic vector bundles

Definition

$K^{\bullet}(X)$: Abelian group

- Generators : holomorphic vector bundles.
- Relations: if we have a short exact sequence,

$$
0 \rightarrow E \rightarrow E^{\prime} \rightarrow E^{\prime \prime} \rightarrow 0
$$

then $E^{\prime}=E+E^{\prime \prime}$.

Theorem

 $\operatorname{ch}_{\mathrm{BC}}: K^{\bullet}(X) \rightarrow H_{\mathrm{BC}}(X, \mathbf{R})$.
Coherent sheaves

```
The category of holomorphic vector bundles is not good. are not holomorphic vector bundles.
```


Coherent sheaves

- The category of holomorphic vector bundles is not good.

Coherent sheaves

- The category of holomorphic vector bundles is not good.
- If $f: D \rightarrow \underline{D}$ is a holomorphic bundle map, then $\operatorname{ker} f$ and $\operatorname{im} f$ are not holomorphic vector bundles.

Coherent sheaves

- The category of holomorphic vector bundles is not good.
- If $f: D \rightarrow \underline{D}$ is a holomorphic bundle map, then $\operatorname{ker} f$ and $\operatorname{im} f$ are not holomorphic vector bundles.
- Holomorphic vector bundle and complex of holomorphic vector bundles can be generalized to coherent sheaves and \mathcal{O}_{X}-complex with coherent cohomologies,

$$
0 \rightarrow \mathscr{F}^{r} \rightarrow \mathscr{F}^{r+1} \rightarrow \ldots \rightarrow \mathscr{F}^{r^{\prime}} \rightarrow 0 .
$$

Coherent sheaves

- The category of holomorphic vector bundles is not good.
- If $f: D \rightarrow \underline{D}$ is a holomorphic bundle map, then $\operatorname{ker} f$ and $\operatorname{im} f$ are not holomorphic vector bundles.
- Holomorphic vector bundle and complex of holomorphic vector bundles can be generalized to coherent sheaves and \mathcal{O}_{X}-complex with coherent cohomologies,

$$
0 \rightarrow \mathscr{F}^{r} \rightarrow \mathscr{F}^{r+1} \rightarrow \ldots \rightarrow \mathscr{F}^{r^{\prime}} \rightarrow 0 .
$$

- $K^{\bullet}(X)$ can be generalised to $K(X), K$-group of coherent sheaves.

Coherent sheaves

- The category of holomorphic vector bundles is not good.
- If $f: D \rightarrow \underline{D}$ is a holomorphic bundle map, then $\operatorname{ker} f$ and $\operatorname{im} f$ are not holomorphic vector bundles.
- Holomorphic vector bundle and complex of holomorphic vector bundles can be generalized to coherent sheaves and \mathcal{O}_{X}-complex with coherent cohomologies,

$$
0 \rightarrow \mathscr{F}^{r} \rightarrow \mathscr{F}^{r+1} \rightarrow \ldots \rightarrow \mathscr{F}^{r^{\prime}} \rightarrow 0 .
$$

- $K^{\bullet}(X)$ can be generalised to $K(X), K$-group of coherent sheaves.

Theorem

An \mathcal{O}_{X}-complex $\left(\mathscr{F}^{\bullet}, v\right)$ has coherent cohomologies iff for any small open set $U \subset X$, there exist a complex of holomorphic vector bundles $\left(E_{U}, v_{U}\right)$ on U, and a quasi-isomorphism

$$
\underbrace{\left(\mathscr{E}_{U}, v_{U}\right)}_{\text {sheaves of holo. sections in } E_{U}} \rightarrow\left(\mathscr{F}^{\bullet}, v\right)_{\mid U}
$$

Coherent sheaves

Block's antiholomorphic superconnections Chern-Weil theory for superconnecions

Global vs local

Global vs local

- If X is projective, $\left(E_{U}, v_{U}\right)$ exists globally, i.e., $U=X$.

Global vs local

- If X is projective, $\left(E_{U}, v_{U}\right)$ exists globally, i.e., $U=X$.
- In general, $\left(E_{U}, v_{U}\right)$ exists only locally. (Voisin: a generic torus of dimension ≥ 3).

Global vs local

- If X is projective, $\left(E_{U}, v_{U}\right)$ exists globally, i.e., $U=X$.
- In general, $\left(E_{U}, v_{U}\right)$ exists only locally. (Voisin: a generic torus of dimension ≥ 3).
- $K^{\bullet}(X)<K(X)$ subgroup.

Global vs local

- If X is projective, $\left(E_{U}, v_{U}\right)$ exists globally, i.e., $U=X$.
- In general, $\left(E_{U}, v_{U}\right)$ exists only locally. (Voisin: a generic torus of dimension ≥ 3).
- $K^{\bullet}(X)<K(X)$ subgroup.
- If X is projective, $K^{\bullet}(X)=K(X)$.

Global vs local

- If X is projective, $\left(E_{U}, v_{U}\right)$ exists globally, i.e., $U=X$.
- In general, $\left(E_{U}, v_{U}\right)$ exists only locally. (Voisin: a generic torus of dimension ≥ 3).
- $K^{\bullet}(X)<K(X)$ subgroup.
- If X is projective, $K^{\bullet}(X)=K(X)$.
- In general, $K^{\bullet}(X) \neq K(X)$.

Coherent sheaves

Block's antiholomorphic superconnections Chern-Weil theory for superconnecions

Questions

Questions

(1) Is there a Chern Character $\mathrm{ch}_{\mathrm{BC}}: K(X) \rightarrow H_{\mathrm{BC}}(X, \mathbf{R})$?

Questions

(1) Is there a Chern Character $\mathrm{ch}_{\mathrm{BC}}: K(X) \rightarrow H_{\mathrm{BC}}(X, \mathbf{R})$?
(3) Is $\mathrm{ch}_{\mathrm{BC}}$ compatible with the direct image associated to $f: X \rightarrow Y$ (RRG)?

Questions

(1) Is there a Chern Character $\mathrm{ch}_{\mathrm{BC}}: K(X) \rightarrow H_{\mathrm{BC}}(X, \mathbf{R})$?
(3) Is $\mathrm{ch}_{\mathrm{BC}}$ compatible with the direct image associated to $f: X \rightarrow Y$ (RRG)?
Bismut-S.-Wei 2021: yes !

Questions

(1) Is there a Chern Character $\mathrm{ch}_{\mathrm{BC}}: K(X) \rightarrow H_{\mathrm{BC}}(X, \mathbf{R})$?
(3) Is $\mathrm{ch}_{\mathrm{BC}}$ compatible with the direct image associated to $f: X \rightarrow Y$ (RRG)?
Bismut-S.-Wei 2021: yes !

Remark

- Grothendieck 1956: X, Y are projective and ch with taking in Chow groups.

Questions

(1) Is there a Chern Character $\mathrm{ch}_{\mathrm{BC}}: K(X) \rightarrow H_{\mathrm{BC}}(X, \mathbf{R})$?
(3) Is $\mathrm{ch}_{\mathrm{BC}}$ compatible with the direct image associated to $f: X \rightarrow Y$ (RRG)?
Bismut-S.-Wei 2021: yes !

Remark

- Grothendieck 1956: X, Y are projective and ch with taking in Chow groups.
- Atiyah-Hirzebruch 1962: ch taking values in H_{dR} and RRG for immersion.

Questions

(1) Is there a Chern Character $\mathrm{ch}_{\mathrm{BC}}: K(X) \rightarrow H_{\mathrm{BC}}(X, \mathbf{R})$?
(3) Is $\mathrm{ch}_{\mathrm{BC}}$ compatible with the direct image associated to $f: X \rightarrow Y$ (RRG)?
Bismut-S.-Wei 2021: yes !

Remark

- Grothendieck 1956: X, Y are projective and ch with taking in Chow groups.
- Atiyah-Hirzebruch 1962: ch taking values in H_{dR} and RRG for immersion.
- Green, O'Brian, Toledo, Tong, Levy... 1980~1990.

Questions

(1) Is there a Chern Character $\mathrm{ch}_{\mathrm{BC}}: K(X) \rightarrow H_{\mathrm{BC}}(X, \mathbf{R})$?
(3) Is $\mathrm{ch}_{\mathrm{BC}}$ compatible with the direct image associated to $f: X \rightarrow Y$ (RRG)?
Bismut-S.-Wei 2021: yes !

Remark

- Grothendieck 1956: X, Y are projective and ch with taking in Chow groups.
- Atiyah-Hirzebruch 1962: ch taking values in H_{dR} and RRG for immersion.
- Green, O'Brian, Toledo, Tong, Levy... 1980~1990.
- Grivaux (2010) : ch taking values in $H_{\text {Deligne }}(X, \mathbf{Q})$ and RRG for projective morphism.

Questions

(1) Is there a Chern Character $\mathrm{ch}_{\mathrm{BC}}: K(X) \rightarrow H_{\mathrm{BC}}(X, \mathbf{R})$?
(3) Is $\mathrm{ch}_{\mathrm{BC}}$ compatible with the direct image associated to $f: X \rightarrow Y$ (RRG)?
Bismut-S.-Wei 2021: yes !

Remark

- Grothendieck 1956: X, Y are projective and ch with taking in Chow groups.
- Atiyah-Hirzebruch 1962: ch taking values in H_{dR} and RRG for immersion.
- Green, O'Brian, Toledo, Tong, Levy... 1980~1990.
- Grivaux (2010) : ch taking values in $H_{\text {Deligne }}(X, \mathbf{Q})$ and RRG for projective morphism.
- Wu (2020) : ch taking values in $H_{\mathrm{BC}}(X, \mathbf{Q})$ and RRG for projective morphism.

Questions

(1) Is there a Chern Character $\mathrm{ch}_{\mathrm{BC}}: K(X) \rightarrow H_{\mathrm{BC}}(X, \mathbf{R})$?
(3) Is $\mathrm{ch}_{\mathrm{BC}}$ compatible with the direct image associated to $f: X \rightarrow Y$ (RRG)?
Bismut-S.-Wei 2021: yes !

Remark

- Grothendieck 1956: X, Y are projective and ch with taking in Chow groups.
- Atiyah-Hirzebruch 1962: ch taking values in H_{dR} and RRG for immersion.
- Green, O'Brian, Toledo, Tong, Levy... 1980~1990.
- Grivaux (2010) : ch taking values in $H_{\text {Deligne }}(X, \mathbf{Q})$ and RRG for projective morphism.
- Wu (2020) : ch taking values in $H_{\mathrm{BC}}(X, \mathbf{Q})$ and RRG for projective morphism.
- Grivaux's unicity theorem: all the constructions of Chern Character are compatible.

Coherent sheaves
Block's antiholomorphic superconnections Chern-Weil theory for superconnecions

Antiholomorphic superconnections

Antiholomorphic superconnections

- $D^{\bullet}=\oplus_{i=r}^{r^{\prime}} D^{i}: \mathbf{Z}$-graded smooth vector bundles on X.

Antiholomorphic superconnections

- $D^{\bullet}=\oplus_{i=r}^{r^{\prime}} D^{i}: \mathbf{Z}$-graded smooth vector bundles on X.

Definition (Quillen 85, Block 2010)

$A^{\prime \prime}: \Omega^{0 \bullet}\left(X, D^{\bullet}\right) \rightarrow\left[\Omega^{0, \bullet}\left(X, D^{\bullet}\right)\right]^{+1}$ of total degree 1 is called an antiholomorphic superconnection, if

Antiholomorphic superconnections

- $D^{\bullet}=\oplus_{i=r}^{r^{\prime}} D^{i}: \mathbf{Z}$-graded smooth vector bundles on X.

Definition (Quillen 85, Block 2010)

$A^{\prime \prime}: \Omega^{0 \bullet}\left(X, D^{\bullet}\right) \rightarrow\left[\Omega^{0, \bullet}\left(X, D^{\bullet}\right)\right]^{+1}$ of total degree 1 is called an antiholomorphic superconnection, if
(1) $A^{\prime \prime}=v_{0}+\nabla^{D \prime \prime}+v_{2}+\ldots$ where $v_{i} \in \Omega^{0, i}\left(X, \operatorname{End}^{1-i}(D)\right)$ and $\nabla^{D \prime \prime}$ antiholo. part of some connection,

Antiholomorphic superconnections

- $D^{\bullet}=\oplus_{i=r}^{r^{\prime}} D^{i}: \mathbf{Z}$-graded smooth vector bundles on X.

Definition (Quillen 85, Block 2010)

$A^{\prime \prime}: \Omega^{0 \bullet}\left(X, D^{\bullet}\right) \rightarrow\left[\Omega^{0, \bullet}\left(X, D^{\bullet}\right)\right]^{+1}$ of total degree 1 is called an antiholomorphic superconnection, if
(1) $A^{\prime \prime}=v_{0}+\nabla^{D \prime \prime}+v_{2}+\ldots$ where $v_{i} \in \Omega^{0, i}\left(X, \operatorname{End}^{1-i}(D)\right)$ and
$\nabla^{D \prime \prime}$ antiholo. part of some connection,
(2) $\left(A^{\prime \prime}\right)^{2}=0$.

An example

If $v_{2}=v_{3}=\ldots=0$, then

$$
\left(A^{\prime \prime}\right)^{2}=0 \Longleftrightarrow v_{0}^{2}=0,\left[\nabla^{D \prime \prime}, v_{0}\right]=0,\left(\nabla^{D \prime \prime}\right)^{2}=0
$$

By Koszul-Malgrange/Newlander-Nirenberg, $\left(D, v_{0}\right)$ is a complex of holomorphic vector bundles.

Chern-Weil theory
Chern character and coherent sheaves Riemann-Roch-Grothendieck

Coherent sheaves

Block's antiholomorphic superconnections

 Chern-Weil theory for superconnecions
Block's Theorem

Block's Theorem

- Given $\left(D^{\bullet}, A^{\prime \prime}\right)$, we can define a \mathcal{O}_{X}-complex $\mathscr{E} \bullet\left(D^{\bullet}, A^{\prime \prime}\right)$ by

$$
U \subset X \text { open } \rightarrow\left(\Omega^{0, \bullet}\left(U,\left.D^{\bullet}\right|_{U}\right),\left.A^{\prime \prime}\right|_{U}\right)
$$

Block's Theorem

- Given $\left(D^{\bullet}, A^{\prime \prime}\right)$, we can define a \mathcal{O}_{X}-complex $\mathscr{E} \bullet\left(D^{\bullet}, A^{\prime \prime}\right)$ by

$$
U \subset X \text { open } \rightarrow\left(\Omega^{0, \bullet}\left(U,\left.D^{\bullet}\right|_{U}\right),\left.A^{\prime \prime}\right|_{U}\right)
$$

Theorem (Block 2010, Bismut-S.-Wei 2021)

Block's Theorem

- Given $\left(D^{\bullet}, A^{\prime \prime}\right)$, we can define a \mathcal{O}_{X}-complex $\mathscr{E} \bullet\left(D^{\bullet}, A^{\prime \prime}\right)$ by

$$
U \subset X \text { open } \rightarrow\left(\Omega^{0, \bullet}\left(U,\left.D^{\bullet}\right|_{U}\right),\left.A^{\prime \prime}\right|_{U}\right)
$$

Theorem (Block 2010, Bismut-S.-Wei 2021)

(1) $\mathscr{E}^{\bullet}\left(D^{\bullet}, A^{\prime \prime}\right)$ has coherent cohomologies.

Block's Theorem

- Given $\left(D^{\bullet}, A^{\prime \prime}\right)$, we can define a \mathcal{O}_{X}-complex $\mathscr{E}^{\bullet}\left(D^{\bullet}, A^{\prime \prime}\right)$ by

$$
U \subset X \text { open } \rightarrow\left(\Omega^{0, \bullet}\left(U,\left.D^{\bullet}\right|_{U}\right),\left.A^{\prime \prime}\right|_{U}\right)
$$

Theorem (Block 2010, Bismut-S.-Wei 2021)

(1) $\mathscr{E}^{\bullet}\left(D^{\bullet}, A^{\prime \prime}\right)$ has coherent cohomologies.
(2) Every $(\mathscr{F} \bullet, v)$ can be "obtained" in this way.

Block's Theorem

- Given $\left(D^{\bullet}, A^{\prime \prime}\right)$, we can define a \mathcal{O}_{X}-complex $\mathscr{E} \bullet\left(D^{\bullet}, A^{\prime \prime}\right)$ by

$$
U \subset X \text { open } \rightarrow\left(\Omega^{0, \bullet}\left(U,\left.D^{\bullet}\right|_{U}\right),\left.A^{\prime \prime}\right|_{U}\right) .
$$

Theorem (Block 2010, Bismut-S.-Wei 2021)

(1) $\mathscr{E}^{\bullet}\left(D^{\bullet}, A^{\prime \prime}\right)$ has coherent cohomologies.
(2) Every $\left(\mathscr{F}^{\bullet}, v\right)$ can be "obtained" in this way.

Proof.

- Locally, after conjugason, $A^{\prime \prime} \simeq v+\nabla^{\prime \prime}$ (extension of Koszul-Malgrange/Newlander-Nirenberg).

Another proof given by Bondal-Rosly 2022.

Block's Theorem

- Given $\left(D^{\bullet}, A^{\prime \prime}\right)$, we can define a \mathcal{O}_{X}-complex $\mathscr{E} \bullet\left(D^{\bullet}, A^{\prime \prime}\right)$ by

$$
U \subset X \text { open } \rightarrow\left(\Omega^{0, \bullet}\left(U,\left.D^{\bullet}\right|_{U}\right),\left.A^{\prime \prime}\right|_{U}\right)
$$

Theorem (Block 2010, Bismut-S.-Wei 2021)

(1) $\mathscr{E}^{\bullet}\left(D^{\bullet}, A^{\prime \prime}\right)$ has coherent cohomologies.
(2) Every $\left(\mathscr{F}^{\bullet}, v\right)$ can be "obtained" in this way.

Proof.

- Locally, after conjugason, $A^{\prime \prime} \simeq v+\nabla^{\prime \prime}$ (extension of Koszul-Malgrange/Newlander-Nirenberg).
- $\left(D^{\bullet}, A^{\prime \prime}\right) \rightarrow \mathscr{E}^{\bullet}\left(D^{\bullet}, A^{\prime \prime}\right)$ defines an equivalence of categories.

Another proof given by Bondal-Rosly 2022.

Block's Theorem

- Given $\left(D^{\bullet}, A^{\prime \prime}\right)$, we can define a \mathcal{O}_{X}-complex $\mathscr{E}^{\bullet}\left(D^{\bullet}, A^{\prime \prime}\right)$ by

$$
U \subset X \text { open } \rightarrow\left(\Omega^{0, \bullet}\left(U,\left.D^{\bullet}\right|_{U}\right),\left.A^{\prime \prime}\right|_{U}\right)
$$

Theorem (Block 2010, Bismut-S.-Wei 2021)

(1) $\mathscr{E}^{\bullet}\left(D^{\bullet}, A^{\prime \prime}\right)$ has coherent cohomologies.
(2) Every $\left(\mathscr{F}^{\bullet}, v\right)$ can be "obtained" in this way.

Proof.

- Locally, after conjugason, $A^{\prime \prime} \simeq v+\nabla^{\prime \prime}$ (extension of Koszul-Malgrange/Newlander-Nirenberg).
- $\left(D^{\bullet}, A^{\prime \prime}\right) \rightarrow \mathscr{E}^{\bullet}\left(D^{\bullet}, A^{\prime \prime}\right)$ defines an equivalence of categories.

Another proof given by Bondal-Rosly 2022.

Chern-Weil theory
Chern character and coherent sheaves Riemann-Roch-Grothendieck

Chern-Weil theory for ($D, A^{\prime \prime}$)

Chern-Weil theory for ($D, A^{\prime \prime}$)

- h : Z-graded Hermitian metric on D^{\bullet}.

Chern-Weil theory for ($D, A^{\prime \prime}$)

- h : Z-graded Hermitian metric on D^{\bullet}.
- $A=A^{\prime \prime}+A^{\prime}$: unitary superconnection.

Chern-Weil theory for $\left(D, A^{\prime \prime}\right)$

- h : Z-graded Hermitian metric on D^{\bullet}.
- $A=A^{\prime \prime}+A^{\prime}$: unitary superconnection.
- $\left(A^{\prime \prime}\right)^{2}=0,\left(A^{\prime}\right)^{2}=0$ and $A^{2}=\left[A^{\prime \prime}, A^{\prime}\right]$.

Chern-Weil theory for ($D, A^{\prime \prime}$)

- h : Z-graded Hermitian metric on D^{\bullet}.
- $A=A^{\prime \prime}+A^{\prime}$: unitary superconnection.
- $\left(A^{\prime \prime}\right)^{2}=0,\left(A^{\prime}\right)^{2}=0$ and $A^{2}=\left[A^{\prime \prime}, A^{\prime}\right]$.

Definition

$\operatorname{ch}\left(D, A^{\prime \prime}, h\right)=\frac{1}{(2 i \pi)^{N / 2}} \operatorname{Tr}_{\mathrm{s}}\left[\exp \left(-A^{2}\right)\right]$.

Chern-Weil theory for ($D, A^{\prime \prime}$)

- h : Z-graded Hermitian metric on D^{\bullet}.
- $A=A^{\prime \prime}+A^{\prime}$: unitary superconnection.
- $\left(A^{\prime \prime}\right)^{2}=0,\left(A^{\prime}\right)^{2}=0$ and $A^{2}=\left[A^{\prime \prime}, A^{\prime}\right]$.

Definition

$\operatorname{ch}\left(D, A^{\prime \prime}, h\right)=\frac{1}{(2 i \pi)^{N / 2}} \operatorname{Tr}_{\mathrm{s}}\left[\exp \left(-A^{2}\right)\right]$.

Theorem (Bismut-S.-Wei 2021)

(1) $\operatorname{ch}\left(D, A^{\prime \prime}, h\right) \in \oplus_{p} \Omega^{p, p}(X, \mathbf{R})$ and d-closed.
(2) $\operatorname{ch}_{\mathrm{BC}}\left(D, A^{\prime \prime}\right)=\left[\operatorname{ch}\left(D, A^{\prime \prime}, h\right)\right]$ in $H_{\mathrm{BC}}(X, \mathbf{R})$ is independent of h.

Chern-Weil theory for ($D, A^{\prime \prime}$)

- h : Z-graded Hermitian metric on D^{\bullet}.
- $A=A^{\prime \prime}+A^{\prime}$: unitary superconnection.
- $\left(A^{\prime \prime}\right)^{2}=0,\left(A^{\prime}\right)^{2}=0$ and $A^{2}=\left[A^{\prime \prime}, A^{\prime}\right]$.

Definition

$\operatorname{ch}\left(D, A^{\prime \prime}, h\right)=\frac{1}{(2 i \pi)^{N / 2}} \operatorname{Tr}_{\mathrm{s}}\left[\exp \left(-A^{2}\right)\right]$.

Theorem (Bismut-S.-Wei 2021)

(1) $\operatorname{ch}\left(D, A^{\prime \prime}, h\right) \in \oplus_{p} \Omega^{p, p}(X, \mathbf{R})$ and d-closed.
(2) $\operatorname{ch}_{\mathrm{BC}}\left(D, A^{\prime \prime}\right)=\left[\operatorname{ch}\left(D, A^{\prime \prime}, h\right)\right]$ in $H_{\mathrm{BC}}(X, \mathbf{R})$ is independent of h.
(3) $\operatorname{ch}_{\mathrm{BC}}$ descends to $K(X) \rightarrow H_{\mathrm{BC}}(X, \mathbf{R})$.

Proof of RRG: strategy

Proof of RRG: strategy

- Write $f=\pi \circ i$ where
- $i: X \rightarrow X \times Y$ (graph of f) immersion.
- $\pi: X \times Y \rightarrow Y$ projection.

Proof of RRG: strategy

- Write $f=\pi \circ i$ where
- $i: X \rightarrow X \times Y$ (graph of f) immersion.
- $\pi: X \times Y \rightarrow Y$ projection.
- Thanks to $f_{!}=\pi_{!} i_{!}$and $f_{*}=\pi_{*} i_{*}$, we need only to show the following two diagrams commute.

RRG for immersions : deformation to normal cone

$W=\mathrm{Bl}_{X \times \infty}\left(Y \times \mathbf{P}^{1}\right)$.

RRG for immersions : deformation to normal cone

$$
W=\mathrm{Bl}_{X \times \infty}\left(Y \times \mathbf{P}^{1}\right)
$$

RRG for immersions : deformation to normal cone

$$
W=\mathrm{Bl}_{X \times \infty}\left(Y \times \mathbf{P}^{1}\right)
$$

RRG for immersions : deformation to normal cone

$$
W=\mathrm{Bl}_{X \times \infty}\left(Y \times \mathbf{P}^{1}\right)
$$

RRG for immersions : deformation to normal cone

$$
W=\mathrm{Bl}_{X \times \infty}\left(Y \times \mathbf{P}^{1}\right)
$$

RRG for immersions : deformation to normal cone

$$
W=\mathrm{Bl}_{X \times \infty}\left(Y \times \mathbf{P}^{1}\right)
$$

Deform an immersion $X \rightarrow Y$ to an other immersion

$$
X \rightarrow \mathbf{P}\left(N_{X \times \infty / Y \times \mathbf{P}^{1}}\right) .
$$

Direct image for projection

- $\pi: M=X \times S \rightarrow S$.

Direct image for projection

- $\pi: M=X \times S \rightarrow S$.
- Assume $\mathscr{F}=\mathscr{E}^{\bullet}\left(D^{\bullet}, A^{\prime \prime}\right) \in K(M)$.

Direct image for projection

- $\pi: M=X \times S \rightarrow S$.
- Assume $\mathscr{F}=\mathscr{E} \bullet\left(D^{\bullet}, A^{\prime \prime}\right) \in K(M)$.
- We need to show

$$
\operatorname{ch}_{\mathrm{BC}}(\pi!\mathscr{F})=\int_{X} \operatorname{Td}_{\mathrm{BC}}(T X) \operatorname{ch}_{\mathrm{BC}}\left(D^{\bullet}, A^{\prime \prime}\right) \text { in } H_{\mathrm{BC}}(S, \mathbf{R})
$$

Direct image for projection

- $\pi: M=X \times S \rightarrow S$.
- Assume $\mathscr{F}=\mathscr{E} \bullet\left(D^{\bullet}, A^{\prime \prime}\right) \in K(M)$.
- We need to show

$$
\operatorname{ch}_{\mathrm{BC}}(\pi!\mathscr{F})=\int_{X} \operatorname{Td}_{\mathrm{BC}}(T X) \operatorname{ch}_{\mathrm{BC}}\left(D^{\bullet}, A^{\prime \prime}\right) \text { in } H_{\mathrm{BC}}(S, \mathbf{R})
$$

- $\mathcal{D}^{\bullet}=\Omega^{0, \bullet}\left(X,\left.D^{\bullet}\right|_{X}\right)$: infinite dimensional Z-graded vector bundle on S.
- Antiholomorphic superconnection $\mathcal{A}^{\prime \prime}=A^{\prime \prime}$

Direct image for projection

- $\pi: M=X \times S \rightarrow S$.
- Assume $\mathscr{F}=\mathscr{E} \bullet\left(D^{\bullet}, A^{\prime \prime}\right) \in K(M)$.
- We need to show

$$
\operatorname{ch}_{\mathrm{BC}}(\pi!\mathscr{F})=\int_{X} \operatorname{Td}_{\mathrm{BC}}(T X) \operatorname{ch}_{\mathrm{BC}}\left(D^{\bullet}, A^{\prime \prime}\right) \text { in } H_{\mathrm{BC}}(S, \mathbf{R})
$$

- $\mathcal{D}^{\bullet}=\Omega^{0, \bullet}\left(X,\left.D^{\bullet}\right|_{X}\right)$: infinite dimensional Z-graded vector bundle on S.
- $\Omega^{0, \bullet}\left(S, \mathcal{D}^{\bullet}\right)=\Omega^{0, \bullet}\left(M, D^{\bullet}\right)$.

Direct image for projection

- $\pi: M=X \times S \rightarrow S$.
- Assume $\mathscr{F}=\mathscr{E} \bullet\left(D^{\bullet}, A^{\prime \prime}\right) \in K(M)$.
- We need to show

$$
\operatorname{ch}_{\mathrm{BC}}(\pi!\mathscr{F})=\int_{X} \operatorname{Td}_{\mathrm{BC}}(T X) \operatorname{ch}_{\mathrm{BC}}\left(D^{\bullet}, A^{\prime \prime}\right) \text { in } H_{\mathrm{BC}}(S, \mathbf{R})
$$

- $\mathcal{D}^{\bullet}=\Omega^{0, \bullet}\left(X,\left.D^{\bullet}\right|_{X}\right)$: infinite dimensional Z-graded vector bundle on S.
- $\Omega^{0, \bullet}\left(S, \mathcal{D}^{\bullet}\right)=\Omega^{0, \bullet}\left(M, D^{\bullet}\right)$.
- Antiholomorphic superconnection $\mathcal{A}^{\prime \prime}=A^{\prime \prime}$.

Direct image for projection

- $\pi: M=X \times S \rightarrow S$.
- Assume $\mathscr{F}=\mathscr{E} \bullet\left(D^{\bullet}, A^{\prime \prime}\right) \in K(M)$.
- We need to show

$$
\operatorname{ch}_{\mathrm{BC}}(\pi!\mathscr{F})=\int_{X} \operatorname{Td}_{\mathrm{BC}}(T X) \operatorname{ch}_{\mathrm{BC}}\left(D^{\bullet}, A^{\prime \prime}\right) \text { in } H_{\mathrm{BC}}(S, \mathbf{R})
$$

- $\mathcal{D}^{\bullet}=\Omega^{0, \bullet}\left(X,\left.D^{\bullet}\right|_{X}\right)$: infinite dimensional Z-graded vector bundle on S.
- $\Omega^{0, \bullet}\left(S, \mathcal{D}^{\bullet}\right)=\Omega^{0, \bullet}\left(M, D^{\bullet}\right)$.
- Antiholomorphic superconnection $\mathcal{A}^{\prime \prime}=A^{\prime \prime}$.
- $\pi!\mathscr{F}=\mathscr{E}^{\bullet}\left(\mathcal{D}^{\bullet}, \mathcal{A}^{\prime \prime}\right)$.

Chern-Weil theory
Chern character and coherent sheaves Riemann-Roch-Grothendieck

Reduce to immersion and projection RRG for immersions RRG for projections

Elliptic Chern character

Elliptic Chern character

- Given metrics g^{D} and $g^{T X}$, we can define an L^{2}-metric on $\mathcal{D}=\Omega^{0} \bullet\left(X,\left.D^{\bullet}\right|_{X}\right)$.

Elliptic Chern character

- Given metrics g^{D} and $g^{T X}$, we can define an L^{2}-metric on $\mathcal{D}=\Omega^{0, \bullet}\left(X,\left.D^{\bullet}\right|_{X}\right)$.
- $\mathcal{A}=\mathcal{A}^{\prime \prime}+\mathcal{A}^{\prime}, \mathcal{A}^{2}$ fibrewise elliptic.

Elliptic Chern character

- Given metrics g^{D} and $g^{T X}$, we can define an L^{2}-metric on $\mathcal{D}=\Omega^{0, \bullet}\left(X,\left.D^{\bullet}\right|_{X}\right)$.
- $\mathcal{A}=\mathcal{A}^{\prime \prime}+\mathcal{A}^{\prime}, \mathcal{A}^{2}$ fibrewise elliptic.
- $\operatorname{ch}\left(\mathcal{D}, \mathcal{A}^{\prime \prime}, g^{D}, g^{T X}\right)=\frac{1}{(2 i \pi)^{N / 2}} \operatorname{Tr}_{\mathrm{s}}\left[\exp \left(-\mathcal{A}^{2}\right)\right]$.

Elliptic Chern character

- Given metrics g^{D} and $g^{T X}$, we can define an L^{2}-metric on $\mathcal{D}=\Omega^{0, \bullet}\left(X,\left.D^{\bullet}\right|_{X}\right)$.
- $\mathcal{A}=\mathcal{A}^{\prime \prime}+\mathcal{A}^{\prime}, \mathcal{A}^{2}$ fibrewise elliptic.
- $\operatorname{ch}\left(\mathcal{D}, \mathcal{A}^{\prime \prime}, g^{D}, g^{T X}\right)=\frac{1}{(2 i \pi)^{N / 2}} \operatorname{Tr}_{\mathrm{s}}\left[\exp \left(-\mathcal{A}^{2}\right)\right]$.

Theorem (Bismut-S.-Wei 2021)

(1) $\operatorname{ch}\left(\mathcal{D}, \mathcal{A}^{\prime \prime}, g^{D}, g^{T X}\right) \in \oplus_{p} \Omega^{p, p}(S, \mathbf{R})$ and d-closed.
(2) Its class $\operatorname{ch}_{\mathrm{BC}}\left(\mathcal{D}, \mathcal{A}^{\prime \prime}\right)$ in $H_{\mathrm{BC}}(S, \mathbf{R})$ is independent of $g^{D}, g^{T X}$, and

Elliptic Chern character

- Given metrics g^{D} and $g^{T X}$, we can define an L^{2}-metric on $\mathcal{D}=\Omega^{0, \bullet}\left(X,\left.D^{\bullet}\right|_{X}\right)$.
- $\mathcal{A}=\mathcal{A}^{\prime \prime}+\mathcal{A}^{\prime}, \mathcal{A}^{2}$ fibrewise elliptic.
- $\operatorname{ch}\left(\mathcal{D}, \mathcal{A}^{\prime \prime}, g^{D}, g^{T X}\right)=\frac{1}{(2 i \pi)^{N / 2}} \operatorname{Tr}_{\mathrm{s}}\left[\exp \left(-\mathcal{A}^{2}\right)\right]$.

Theorem (Bismut-S.-Wei 2021)

(1) $\operatorname{ch}\left(\mathcal{D}, \mathcal{A}^{\prime \prime}, g^{D}, g^{T X}\right) \in \oplus_{p} \Omega^{p, p}(S, \mathbf{R})$ and d-closed.
(2) Its class $\operatorname{ch}_{\mathrm{BC}}\left(\mathcal{D}, \mathcal{A}^{\prime \prime}\right)$ in $H_{\mathrm{BC}}(S, \mathbf{R})$ is independent of $g^{D}, g^{T X}$, and

$$
\operatorname{ch}_{\mathrm{BC}}\left(\mathcal{D}, \mathcal{A}^{\prime \prime}\right)=\operatorname{ch}_{\mathrm{BC}}(\pi!\mathcal{F})
$$

Elliptic Chern character

- Given metrics g^{D} and $g^{T X}$, we can define an L^{2}-metric on $\mathcal{D}=\Omega^{0, \bullet}\left(X,\left.D^{\bullet}\right|_{X}\right)$.
- $\mathcal{A}=\mathcal{A}^{\prime \prime}+\mathcal{A}^{\prime}, \mathcal{A}^{2}$ fibrewise elliptic.
- $\operatorname{ch}\left(\mathcal{D}, \mathcal{A}^{\prime \prime}, g^{D}, g^{T X}\right)=\frac{1}{(2 i \pi)^{N / 2}} \operatorname{Tr}_{\mathrm{s}}\left[\exp \left(-\mathcal{A}^{2}\right)\right]$.

Theorem (Bismut-S.-Wei 2021)

(1) $\operatorname{ch}\left(\mathcal{D}, \mathcal{A}^{\prime \prime}, g^{D}, g^{T X}\right) \in \oplus_{p} \Omega^{p, p}(S, \mathbf{R})$ and d-closed.
(2) Its class $\operatorname{ch}_{\mathrm{BC}}\left(\mathcal{D}, \mathcal{A}^{\prime \prime}\right)$ in $H_{\mathrm{BC}}(S, \mathbf{R})$ is independent of $g^{D}, g^{T X}$, and

$$
\operatorname{ch}_{\mathrm{BC}}\left(\mathcal{D}, \mathcal{A}^{\prime \prime}\right)=\operatorname{ch}_{\mathrm{BC}}(\pi!\mathcal{F})
$$

Proof.

spectral truncation + fibrewise Hodge theory.

Elliptic Chern character

- Given metrics g^{D} and $g^{T X}$, we can define an L^{2}-metric on $\mathcal{D}=\Omega^{0, \bullet}\left(X,\left.D^{\bullet}\right|_{X}\right)$.
- $\mathcal{A}=\mathcal{A}^{\prime \prime}+\mathcal{A}^{\prime}, \mathcal{A}^{2}$ fibrewise elliptic.
- $\operatorname{ch}\left(\mathcal{D}, \mathcal{A}^{\prime \prime}, g^{D}, g^{T X}\right)=\frac{1}{(2 i \pi)^{N / 2}} \operatorname{Tr}_{\mathrm{s}}\left[\exp \left(-\mathcal{A}^{2}\right)\right]$.

Theorem (Bismut-S.-Wei 2021)

(1) $\operatorname{ch}\left(\mathcal{D}, \mathcal{A}^{\prime \prime}, g^{D}, g^{T X}\right) \in \oplus_{p} \Omega^{p, p}(S, \mathbf{R})$ and d-closed.
(2) Its class $\operatorname{ch}_{\mathrm{BC}}\left(\mathcal{D}, \mathcal{A}^{\prime \prime}\right)$ in $H_{\mathrm{BC}}(S, \mathbf{R})$ is independent of $g^{D}, g^{T X}$, and

$$
\operatorname{ch}_{\mathrm{BC}}\left(\mathcal{D}, \mathcal{A}^{\prime \prime}\right)=\operatorname{ch}_{\mathrm{BC}}(\pi!\mathcal{F})
$$

Proof.

spectral truncation + fibrewise Hodge theory.
Byproduct: a new proof of Grauert's theorem.

Atiyah-Singer index theorem

Atiyah-Singer index theorem

- $S=*$: by Atiyah-Singer,

$$
\begin{aligned}
\operatorname{ch}_{\mathrm{BC}}(\pi!\mathscr{F})=\operatorname{ch}_{\mathrm{BC}}\left(\mathcal{D}, \mathcal{A}^{\prime \prime}\right)=\operatorname{ind} & \left(\mathcal{A}_{+}\right) \\
& =\int_{X} \operatorname{Td}_{\mathrm{BC}}(T X) \operatorname{ch}_{\mathrm{BC}}\left(\mathrm{D}, \mathrm{~A}^{\prime \prime}\right)
\end{aligned}
$$

- S general : family index theory of Atiyah-Singer implies RRG in

Atiyah-Singer index theorem

- $S=*$: by Atiyah-Singer,

$$
\begin{aligned}
\operatorname{ch}_{\mathrm{BC}}(\pi!\mathscr{F})=\operatorname{ch}_{\mathrm{BC}}\left(\mathcal{D}, \mathcal{A}^{\prime \prime}\right)= & \operatorname{ind}\left(\mathcal{A}_{+}\right) \\
& =\int_{X} \operatorname{Td}_{\mathrm{BC}}(T X) \operatorname{ch}_{\mathrm{BC}}\left(\mathrm{D}, \mathrm{~A}^{\prime \prime}\right)
\end{aligned}
$$

- S general : family index theory of Atiyah-Singer implies RRG in H_{dR}.

Atiyah-Singer index theorem

- $S=*$: by Atiyah-Singer,

$$
\begin{aligned}
\operatorname{ch}_{\mathrm{BC}}(\pi!\mathscr{F})=\operatorname{ch}_{\mathrm{BC}}\left(\mathcal{D}, \mathcal{A}^{\prime \prime}\right)= & \operatorname{ind}\left(\mathcal{A}_{+}\right) \\
& =\int_{X} \operatorname{Td}_{\mathrm{BC}}(T X) \operatorname{ch}_{\mathrm{BC}}\left(\mathrm{D}, \mathrm{~A}^{\prime \prime}\right)
\end{aligned}
$$

- S general : family index theory of Atiyah-Singer implies RRG in H_{dR}.
- To get RRG in H_{BC}, we need the local family index theorem.

Elliptic local index theorem

Elliptic local index theorem

- $J^{T X}$ complex structure on $X, \omega^{X}=g^{T X}\left(\cdot, J^{T X} \cdot\right)$.
rescaling.

Elliptic local index theorem

- $J^{T X}$ complex structure on $X, \omega^{X}=g^{T X}\left(\cdot, J^{T X} \cdot\right)$.
- If $\bar{\partial}^{X} \partial^{X} \omega^{X}=0$, by local family index theorem, as $t \rightarrow 0$, $\operatorname{ch}\left(\mathcal{D}, \mathcal{A}^{\prime \prime}, g^{D}, g^{T X} / t\right) \rightarrow$ some limit in $\Omega(S, \mathbf{R})$

$$
\equiv \int_{X} \operatorname{Td}_{\mathrm{BC}}(T X) \operatorname{ch}_{\mathrm{BC}}\left(D, A^{\prime \prime}\right) \text { in } H_{\mathrm{BC}}(S, \mathbf{R})
$$

Elliptic local index theorem

- $J^{T X}$ complex structure on $X, \omega^{X}=g^{T X}\left(\cdot, J^{T X} \cdot\right)$.
- If $\bar{\partial}^{X} \partial^{X} \omega^{X}=0$, by local family index theorem, as $t \rightarrow 0$, $\operatorname{ch}\left(\mathcal{D}, \mathcal{A}^{\prime \prime}, g^{D}, g^{T X} / t\right) \rightarrow$ some limit in $\Omega(S, \mathbf{R})$

$$
\equiv \int_{X} \operatorname{Td}_{\mathrm{BC}}(T X) \operatorname{ch}_{\mathrm{BC}}\left(D, A^{\prime \prime}\right) \text { in } H_{\mathrm{BC}}(S, \mathbf{R}) .
$$

- If $\bar{\partial}^{X} \partial^{X} \omega^{X} \neq 0$, there are some divergence terms after Getzler's rescaling.

Dolbeault-Koszul resolution

- $\mathcal{X}=T X . Y \in C^{\infty}\left(\mathcal{X}, \pi^{*} T X\right)$.

Dolbeault-Koszul resolution

- $\mathcal{X}=T X . Y \in C^{\infty}\left(\mathcal{X}, \pi^{*} T X\right)$.

- $i: X \rightarrow \mathcal{X}$ by zero section.

Dolbeault-Koszul resolution

- $\mathcal{X}=T X . Y \in C^{\infty}\left(\mathcal{X}, \pi^{*} T X\right)$.

- $i: X \rightarrow \mathcal{X}$ by zero section.
- Dolbeault-Koszul: $i_{!} \mathcal{O}_{X}=\mathscr{E}^{\bullet}\left(\pi^{*} \Lambda^{\bullet}\left(T^{*} X\right), \bar{\partial}^{\mathcal{X}}+i_{Y}\right)$.

Enlarge the fibration

Enlarge the fibration

- $i!\mathscr{F}$ and \mathscr{F} are expected to have the same direct image on S.

Enlarge the fibration

- $i!\mathscr{F}$ and \mathscr{F} are expected to have the same direct image on S.
- $i_{!} \mathscr{F}=\mathscr{E}^{\bullet}\left(\underline{\pi}^{*}\left(\Lambda\left(T^{*} X\right) \widehat{\otimes} D\right), \underline{\pi}^{*} A^{\prime \prime}+i_{Y}\right)$.

Hypoelliptic deformation

- Infinite dimensional object on S :

$$
(\underbrace{\Omega^{0, \bullet}\left(\mathcal{X}, \pi^{*}\left(\Lambda\left(T^{*} X\right) \widehat{\otimes} D\right)\right.}_{\mathcal{D}}, \mathcal{A}_{Y}^{\prime \prime})
$$

Hypoelliptic deformation

- Infinite dimensional object on S :

$$
(\underbrace{\Omega^{0, \bullet}\left(\mathcal{X}, \pi^{*}\left(\Lambda\left(T^{*} X\right) \widehat{\otimes} D\right)\right.}_{\mathcal{D}}, \mathcal{A}_{Y}^{\prime \prime})
$$

- $\mathcal{D}=\Omega^{\bullet \bullet}\left(X, \Omega^{0, \bullet}(T X) \otimes D\right)$.

Hypoelliptic deformation

- Infinite dimensional object on S :

$$
(\underbrace{\Omega^{0, \bullet}\left(\mathcal{X}, \pi^{*}\left(\Lambda\left(T^{*} X\right) \widehat{\otimes} D\right)\right.}_{\mathcal{D}}, \mathcal{A}_{Y}^{\prime \prime})
$$

- $\mathcal{D}=\Omega^{\bullet \bullet}\left(X, \Omega^{0, \bullet}(T X) \otimes D\right)$.
- $g^{D}, g^{T X} \rightsquigarrow L^{2}$-metric on $\Omega^{0, \bullet}(T X) \otimes D \rightsquigarrow$ non degenerate Hermitian form by twisting $r:(x, Y) \rightarrow(x,-Y)$.

Hypoelliptic deformation

- Infinite dimensional object on S :

$$
(\underbrace{\Omega^{0, \bullet}\left(\mathcal{X}, \pi^{*}\left(\Lambda\left(T^{*} X\right) \widehat{\otimes} D\right)\right.}_{\mathcal{D}}, \mathcal{A}_{Y}^{\prime \prime})
$$

- $\mathcal{D}=\Omega^{\bullet \bullet}\left(X, \Omega^{0, \bullet}(T X) \otimes D\right)$.
- $g^{D}, g^{T X} \rightsquigarrow L^{2}$-metric on $\Omega^{0, \bullet}(T X) \otimes D \rightsquigarrow$ non degenerate Hermitian form by twisting $r:(x, Y) \rightarrow(x,-Y)$.
- $\omega^{X} \rightsquigarrow$ non degenerate Hermitian form $\left(\frac{i}{2 \pi}\right)^{\operatorname{dim} X} \int_{X} \widetilde{\alpha} \wedge \overline{e^{-i \omega^{X}} \beta}$

Hypoelliptic deformation

- Infinite dimensional object on S :

$$
(\underbrace{\Omega^{0, \bullet}\left(\mathcal{X}, \pi^{*}\left(\Lambda\left(T^{*} X\right) \widehat{\otimes} D\right)\right.}_{\mathcal{D}}, \mathcal{A}_{Y}^{\prime \prime})
$$

- $\mathcal{D}=\Omega^{\bullet \bullet}\left(X, \Omega^{0, \bullet}(T X) \otimes D\right)$.
- $g^{D}, g^{T X} \rightsquigarrow L^{2}$-metric on $\Omega^{0, \bullet}(T X) \otimes D \rightsquigarrow$ non degenerate Hermitian form by twisting $r:(x, Y) \rightarrow(x,-Y)$.
- $\omega^{X} \rightsquigarrow$ non degenerate Hermitian form $\left(\frac{i}{2 \pi}\right)^{\operatorname{dim} X} \int_{X} \widetilde{\alpha} \wedge \overline{e^{-i \omega^{X}} \beta}$
- We get non degenerate Hermitian form on \mathcal{D}.

Hypoelliptic deformation

- Infinite dimensional object on S :

$$
(\underbrace{\Omega^{0, \bullet}\left(\mathcal{X}, \pi^{*}\left(\Lambda\left(T^{*} X\right) \widehat{\otimes} D\right)\right.}_{\mathcal{D}}, \mathcal{A}_{Y}^{\prime \prime})
$$

- $\mathcal{D}=\Omega^{\bullet \bullet}\left(X, \Omega^{0, \bullet}(T X) \otimes D\right)$.
- $g^{D}, g^{T X} \rightsquigarrow L^{2}$-metric on $\Omega^{0, \bullet}(T X) \otimes D \rightsquigarrow$ non degenerate Hermitian form by twisting $r:(x, Y) \rightarrow(x,-Y)$.
- $\omega^{X} \rightsquigarrow$ non degenerate Hermitian form $\left(\frac{i}{2 \pi}\right)^{\operatorname{dim} X} \int_{X} \widetilde{\alpha} \wedge \overline{e^{-i \omega^{X}} \beta}$
- We get non degenerate Hermitian form on \mathcal{D}.
- $\mathcal{A}_{Y}=\mathcal{A}_{Y}^{\prime \prime}+\mathcal{A}_{Y}^{\prime}, \mathcal{A}_{Y}^{2}$ is hypoelliptic,

$$
\mathcal{A}_{Y}^{2}=\frac{1}{2}\left(-\Delta^{V}+|Y|^{2}+\ldots\right)+\nabla_{Y^{H}}+i \partial \bar{\partial} \omega^{X}+\ldots
$$

Hypoelliptic Chern-Weil theory

- We can define $\operatorname{ch}\left(\mathcal{A}_{Y}^{\prime \prime}, g^{D}, g^{T X}, \omega^{X}\right)$ as before.

Hypoelliptic Chern-Weil theory

- We can define $\operatorname{ch}\left(\mathcal{A}_{Y}^{\prime \prime}, g^{D}, g^{T X}, \omega^{X}\right)$ as before.

Theorem

(1) $\operatorname{ch}\left(\mathcal{A}_{Y}^{\prime \prime}, g^{D}, g^{T X}, \omega^{X}\right) \in \oplus_{p} \Omega^{p, p}(S, \mathbf{R})$ and d-closed
(2) $\left[\operatorname{ch}\left(\mathcal{A}_{Y}^{\prime \prime}, g^{D}, g^{T X}, \omega^{X}\right)\right] \in H_{\mathrm{BC}}(S, \mathbf{R})$ is independent of $g^{D}, g^{T X}, \omega^{X}$.

Hypoelliptic Chern-Weil theory

- We can define $\operatorname{ch}\left(\mathcal{A}_{Y}^{\prime \prime}, g^{D}, g^{T X}, \omega^{X}\right)$ as before.

Theorem

(1) $\operatorname{ch}\left(\mathcal{A}_{Y}^{\prime \prime}, g^{D}, g^{T X}, \omega^{X}\right) \in \oplus_{p} \Omega^{p, p}(S, \mathbf{R})$ and d-closed
(2) $\left[\operatorname{ch}\left(\mathcal{A}_{Y}^{\prime \prime}, g^{D}, g^{T X}, \omega^{X}\right)\right] \in H_{\mathrm{BC}}(S, \mathbf{R})$ is independent of $g^{D}, g^{T X}, \omega^{X}$.
($3\left[\operatorname{ch}\left(\mathcal{A}_{Y}^{\prime \prime}, g^{D}, g^{T X}, \omega^{X}\right)\right]=\operatorname{ch}_{\mathrm{BC}}(\pi!\mathscr{F}) \in H_{\mathrm{BC}}(S, \mathbf{R})$.
\square

Hypoelliptic Chern-Weil theory

- We can define $\operatorname{ch}\left(\mathcal{A}_{Y}^{\prime \prime}, g^{D}, g^{T X}, \omega^{X}\right)$ as before.

Theorem

(1) $\operatorname{ch}\left(\mathcal{A}_{Y}^{\prime \prime}, g^{D}, g^{T X}, \omega^{X}\right) \in \oplus_{p} \Omega^{p, p}(S, \mathbf{R})$ and d-closed
(2) $\left[\operatorname{ch}\left(\mathcal{A}_{Y}^{\prime \prime}, g^{D}, g^{T X}, \omega^{X}\right)\right] \in H_{\mathrm{BC}}(S, \mathbf{R})$ is independent of $g^{D}, g^{T X}, \omega^{X}$.
(3) $\left[\operatorname{ch}\left(\mathcal{A}_{Y}^{\prime \prime}, g^{D}, g^{T X}, \omega^{X}\right)\right]=\operatorname{ch}_{\mathrm{BC}}(\pi!\mathscr{F}) \in H_{\mathrm{BC}}(S, \mathbf{R})$.

Proof.

Part 3 is based on the fact that the hypoelliptic curvature \mathcal{A}_{Y}^{2} can be deformed to the elliptic curvature \mathcal{A}^{2}. As $b \rightarrow 0$, we have (Bismut-Lebeau 08)

$$
\operatorname{ch}\left(\mathcal{A}_{Y}^{\prime \prime}, g^{D}, b^{4} g^{T X}, \omega^{X}\right) \rightarrow \operatorname{ch}\left(\mathcal{A}^{\prime \prime}, g^{D}, g^{T X}\right) \text { in } \Omega(S, \mathbf{R}) .
$$

Hypoelliptic local index theorem

Hypoelliptic local index theorem

- If $\bar{\partial}^{X} \partial^{X} \omega^{X}=0$, as $t \rightarrow 0$,
(3.1) $\quad \operatorname{ch}\left(\mathcal{A}_{Y}^{\prime \prime}, g^{D}, g^{T X} / t^{3}, \omega^{X} / t\right) \rightarrow \int_{X} \operatorname{Td}\left(T X, g^{T X}\right) \operatorname{ch}\left(D, A^{\prime \prime}, g^{D}\right)$.

[^0]
Hypoelliptic local index theorem

- If $\bar{\partial}^{X} \partial^{X} \omega^{X}=0$, as $t \rightarrow 0$,
(3.1) $\quad \operatorname{ch}\left(\mathcal{A}_{Y}^{\prime \prime}, g^{D}, g^{T X} / t^{3}, \omega^{X} / t\right) \rightarrow \int_{X} \operatorname{Td}\left(T X, g^{T X}\right) \operatorname{ch}\left(D, A^{\prime \prime}, g^{D}\right)$.
- If we replace ω^{X} by $|Y|^{2} \omega^{X}$ in the construction, as $t \rightarrow 0$, (3.2) $\operatorname{ch}\left(\mathcal{A}_{Y}^{\prime \prime}, g^{D}, g^{T X} / t^{3},|Y|^{2} \omega^{X}\right) \rightarrow \int_{X} \operatorname{Td}\left(T X, g^{T X}\right) \operatorname{ch}\left(D, A^{\prime \prime}, g^{D}\right)$,
without any assumption!

Hypoelliptic local index theorem

- If $\bar{\partial}^{X} \partial^{X} \omega^{X}=0$, as $t \rightarrow 0$,
(3.1) $\quad \operatorname{ch}\left(\mathcal{A}_{Y}^{\prime \prime}, g^{D}, g^{T X} / t^{3}, \omega^{X} / t\right) \rightarrow \int_{X} \operatorname{Td}\left(T X, g^{T X}\right) \operatorname{ch}\left(D, A^{\prime \prime}, g^{D}\right)$.
- If we replace ω^{X} by $|Y|^{2} \omega^{X}$ in the construction, as $t \rightarrow 0$, (3.2) $\operatorname{ch}\left(\mathcal{A}_{Y}^{\prime \prime}, g^{D}, g^{T X} / t^{3},|Y|^{2} \omega^{X}\right) \rightarrow \int_{X} \operatorname{Td}\left(T X, g^{T X}\right) \operatorname{ch}\left(D, A^{\prime \prime}, g^{D}\right)$, without any assumption!
- The associated hypoelliptic Laplacians are
(1) case (3.1): $-\frac{1}{2} \Delta^{V}+|t Y|^{2}+t^{1 / 2} \nabla_{t Y^{H}}+i \partial \bar{\partial} \omega^{X} / t+\ldots$.

Hypoelliptic local index theorem

- If $\bar{\partial}^{X} \partial^{X} \omega^{X}=0$, as $t \rightarrow 0$,
(3.1) $\quad \operatorname{ch}\left(\mathcal{A}_{Y}^{\prime \prime}, g^{D}, g^{T X} / t^{3}, \omega^{X} / t\right) \rightarrow \int_{X} \operatorname{Td}\left(T X, g^{T X}\right) \operatorname{ch}\left(D, A^{\prime \prime}, g^{D}\right)$.
- If we replace ω^{X} by $|Y|^{2} \omega^{X}$ in the construction, as $t \rightarrow 0$, (3.2) $\operatorname{ch}\left(\mathcal{A}_{Y}^{\prime \prime}, g^{D}, g^{T X} / t^{3},|Y|^{2} \omega^{X}\right) \rightarrow \int_{X} \operatorname{Td}\left(T X, g^{T X}\right) \operatorname{ch}\left(D, A^{\prime \prime}, g^{D}\right)$, without any assumption!
- The associated hypoelliptic Laplacians are
(1) case (3.1): $-\frac{1}{2} \Delta^{V}+|t Y|^{2}+t^{1 / 2} \nabla_{t Y^{H}}+i \partial \bar{\partial} \omega^{X} / t+\ldots$.
(2) case (3.2): $-\frac{1}{2} \Delta^{V}+\left|t^{3 / 4} Y\right|^{4}+t^{3 / 4} \nabla_{t^{3 / 4} Y^{H}}+i \partial \bar{\partial}|Y|^{2} \omega^{X}+\ldots$.

References

J.-M. Bismut, S. Shen, and Z. Wei. Coherent sheaves, superconnections, and RRG. arXiv:2102.08129, to appear Progress in Mathematics 347.
J.-M. Bismut. Hypoelliptic Laplacian and Bott-Chern cohomology, Progress in Mathematics 305. Birkhäuser, 2013.
J. Block. Duality and equivalence of module categories in noncommutative geometry. In A celebration of the mathematical legacy of Raoul Bott, volume 50 of CRM Proc. Lecture Notes, pages 311-339. Amer. Math. Soc., Providence, RI, 2010.

Thank you for your attention!

[^0]: - If we replace ω^{X} by $|Y|^{2} \omega^{X}$ in the construction, as $t \rightarrow 0$

